

Foundry WLSI Technology for Power Management System Integration

Chuei-Tang Wang, Chih-Lin Chen, Jeng-Shien Hsieh, Victor C.Y. Chang, Douglas Yu

R&D,TSMC

Oct. 2016

2016 PwrSoC

© 2016 TSMC, Ltd

Open Innovation Platform®

Outline

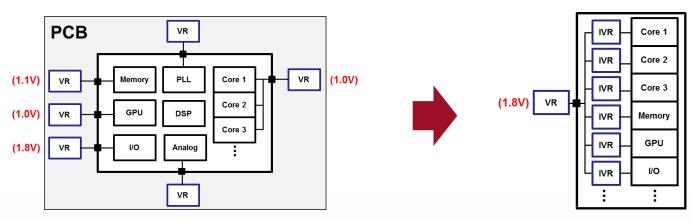
Motivation

- PMIC system integration trends
- Foundry WLSI technology Portfolio

High Performance Computing System (HPC) on CoWoS

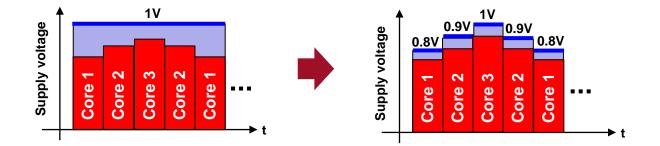
- VR on CoWoS
- Impact of Si interposer
- Mobile AP and PMIC System (MAPS) on InFO
 - Power Delivery Network
 - PVR on InFO

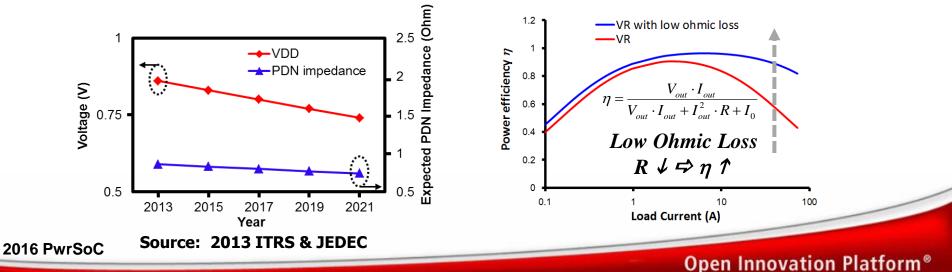
Summary & Outlook

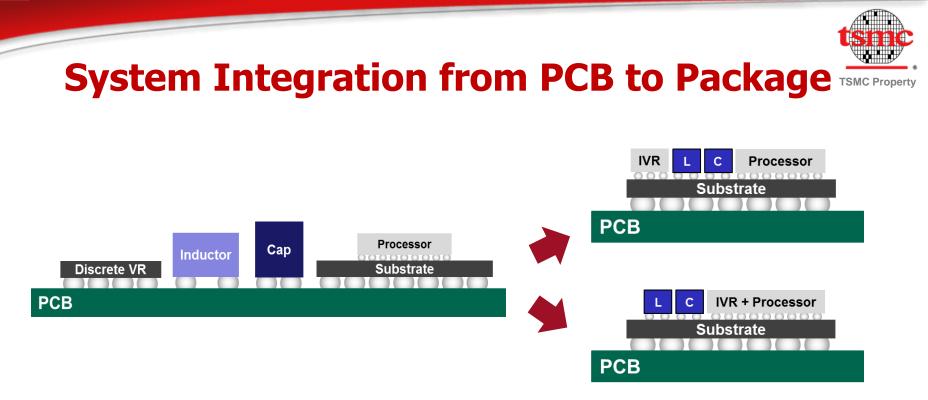

2016 PwrSoC

Motivation: High Efficiency Power Management System

• PMIC System Trend:


- System on PCB → System on SoC/Package
- Shared Voltage → Per-core Voltage Control
- V_{dd} Scaling \rightarrow Low PDN Impedance Needed
- Long Battery Life → High Efficiency Voltage Regulator
- **System on PCB** \rightarrow System on SoC/Package

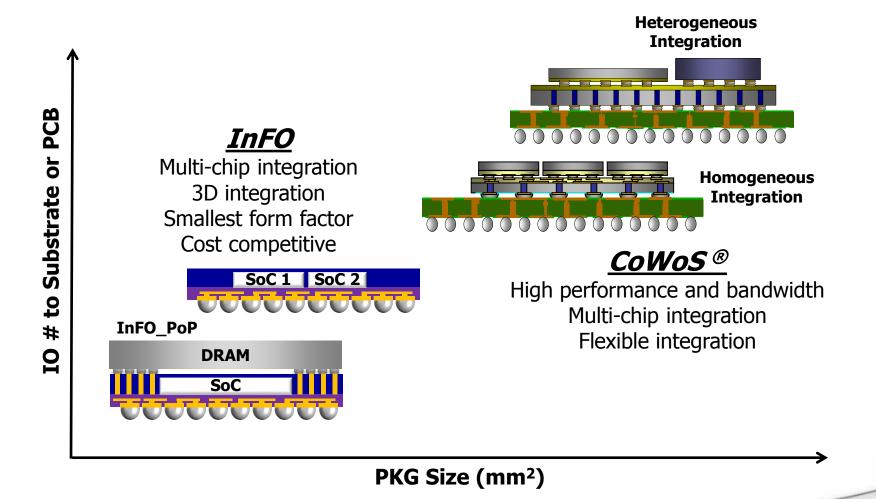



Motivation: High Efficiency Power Management System

Shared voltage → Per-core voltage control

- **V**_{dd} Scaling \rightarrow 0.74V \rightarrow Low PDN Impedance
- Long Battery Life \rightarrow High Efficiency VR \rightarrow Low Ohmic Loss

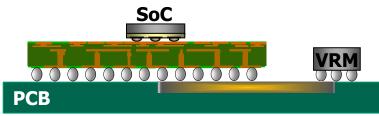
Benefits from System on Package


- PDN path: Long \rightarrow Short
- Discrete component number: Dozen \rightarrow Several
- Switching frequency: 10 MHz \rightarrow 100 MHz
 - L: µH → nH
 - > C: μ F → nF
- Form factor: Large \rightarrow Small

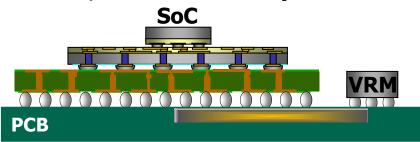
2016 PwrSoC

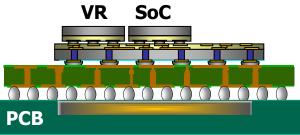
5

TSMC WLSI Technology Platforms from low cost to high performance

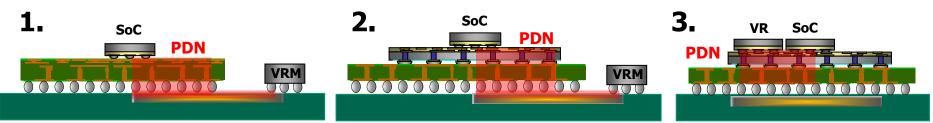


2016 PwrSoC * WLSI: Wafer Level System Integration


© 2016 TSMC, Ltd


• System 1: VRM on board, SoC on substrate (FCBGA)

• System 2: VRM on board, SoC on Si interposer


• System 3: VR and SoC on Si interposer

Open Innovation Platform®

© 2016 TSMC, Ltd

SoC and VR(M) System Design on CoWoS

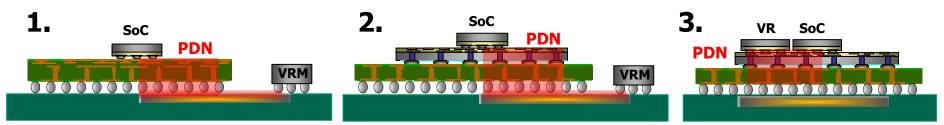
System 1: VRM on board, SoC on substrate

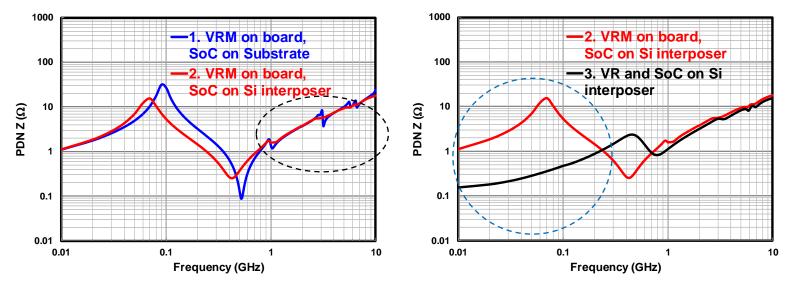
- PDN path: VRM \rightarrow PCB \rightarrow Substrate \rightarrow SoC
- PDN L/W: PCB/50/5 mm, Substrate/12/4 mm
- PDN metal layer: PCB/2, Substrate/10

• System 2: VRM on board, SoC on Si interposer

- PDN path: VRM \rightarrow PCB \rightarrow Substrate \rightarrow Si Interposer \rightarrow SoC
- PDN L/W: PCB/50/5 mm, Substrate/12/4 mm, Si interposer/12/4 mm
- PDN metal layer: PCB/2, Substrate/8, Si Interposer /2

System 3: VR and SoC on Si interposer


- PDN path: VR \rightarrow Si Interposer and Substrate \rightarrow SoC
- PDN L/W: Substrate/12/4 mm, Si interposer/12/4 mm
- PDN metal layer: Substrate/8, Si Interposer /2


FOM: PDN impedance, voltage drop and voltage variation

2016 PwrSoC

© 2016 TSMC, Ltd

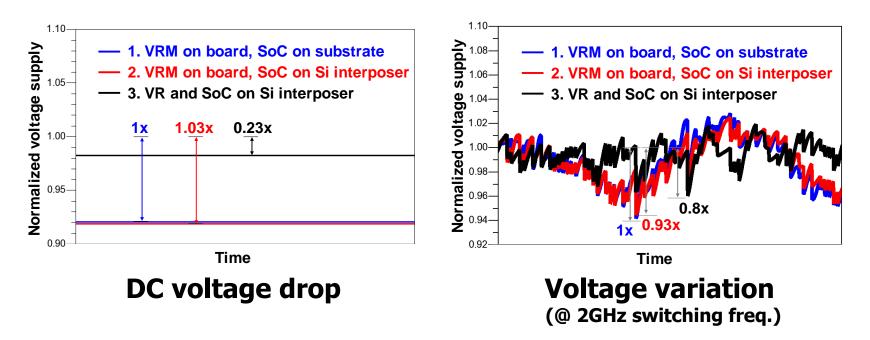
PDN Impedance Reduction from Si Interposer

Interposer mitigates anti-resonance at high frequencies

Short interconnect reduces PDN impedance: DC and AC

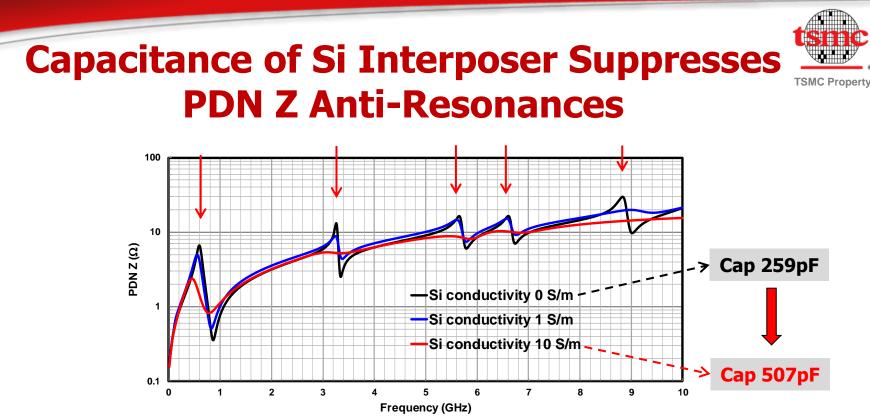
Numbers of De-cap to be decreased

2016 PwrSoC

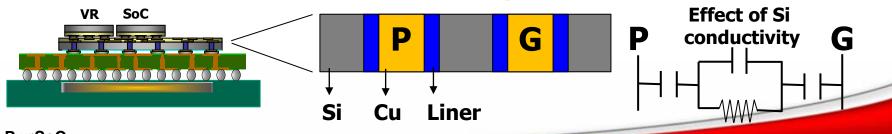

© 2016 TSMC, Ltd

Open Innovation Platform®

TSMC Property



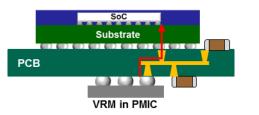
Si Interposer Reduces Voltage Drop and Voltage Variation


- The voltage drop and voltage variation from VR to SoC ∞ PDN Impedance
- The VR and SoC on Si interposer system
 - DC voltage drop: 23% of VRM on board, SoC on substrate system
 - Voltage variation: 80% of VRM on board, SoC on substrate system.

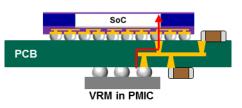
2016 PwrSoC

- High conductivity Si interposer suppresses the anti-resonances
- High Si conductivity → High TSV Liner capacitance → More suppression of PDN Z anti-resonance

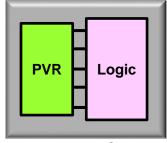
Cross section of TSV and equivalent circuits


2016 PwrSoC

© 2016 TSMC. Ltd


Open Innovation Platform®

SoC and VR(M) System Design on InFO for Mobile Products



System 1: FC and PMIC

System 2: InFO and PMIC

InFO and FC PKG

System 3: InFO with PVR

Open Innovation Platform®

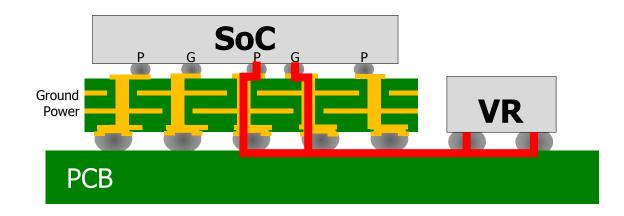
• System 1: FC and PMIC

- PDN path: VRM \rightarrow PCB \rightarrow Substrate \rightarrow SoC
- PDN routing: in millimeter scale

• System 2: InFO and PMIC

- PDN path: VRM \rightarrow PCB \rightarrow InFO \rightarrow SoC
- PDN routing: in millimeter scale

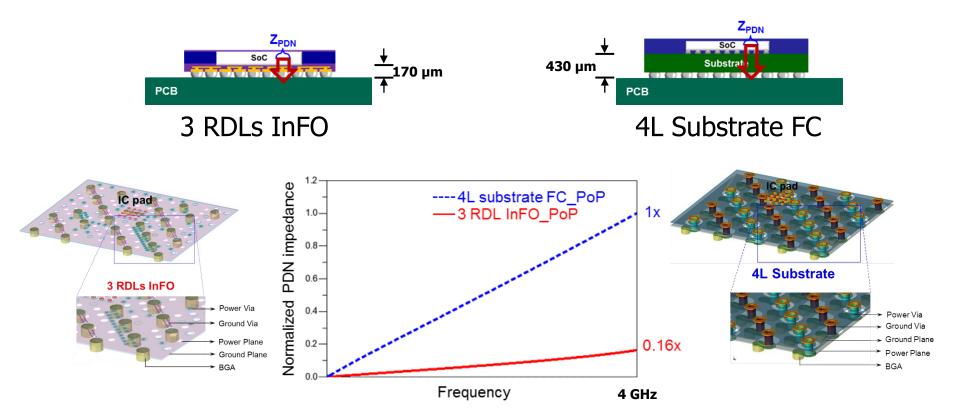
• System 3: InFO with partitioned VR (PVR)


- PDN path: VR \rightarrow InFO \rightarrow SoC
- PDN routing: in micrometer scale
- FOM: PDN impedance, voltage drop, voltage variation, power response

2016 PwrSoC

Open Innovation Platform®

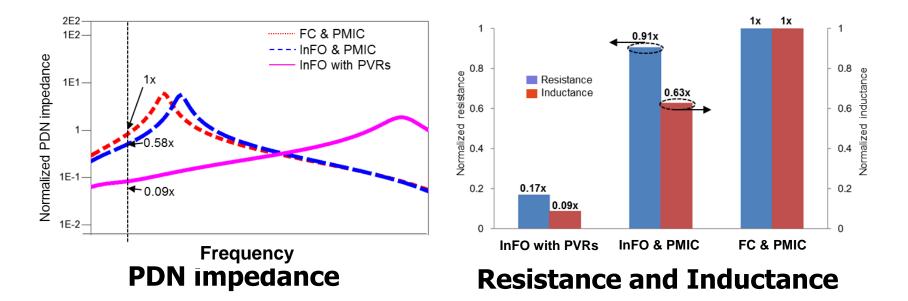
Power Integrity – PDN Impedance Calculation


- PI: A measure for power supply stability; related to impedance of power distribution network (PDN)
- PDN impedance is $Z_{PDN} = R + j\omega L + (\frac{1}{j\omega C} // Z_{VR})$ where Z_{VR} is the impedance of voltage regulator.
- Low R & L in PDN → Low Z_{PDN} → Better PI performance

2016 PwrSoC

13

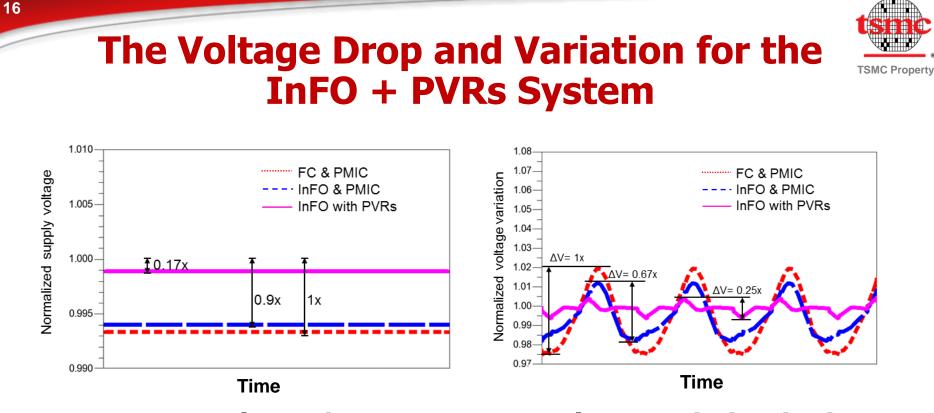
Low PDN Impedance in InFO Package



- PDN impedance: InFO_PoP is 16% of the FC_PoP.
- InFO_PoP: Substrate & C4 Bump eliminated and thin RDL
- Low PDN impedance → High power stability

2016 PwrSoC

14

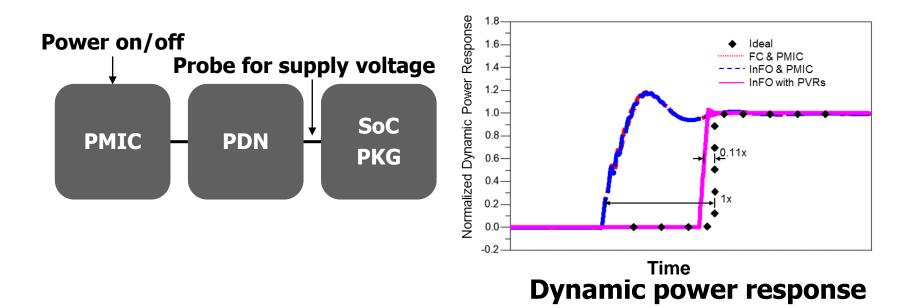


InFO with PVRs system

- PDN impedance: 9% of FC & PMIC system
- Resistance: 17% of FC & PMIC system
- Inductance: 9% of FC & PMIC system

2016 PwrSoC

DC voltage drop


Voltage variation (ΔV)

- The voltage drop and voltage variation from VR to AP \propto PDN Impedance
- The InFO with PVRs system
 - DC voltage drop: 17% of FC & PMIC system
 - Voltage variation: 25% of FC & PMIC system

2016 PwrSoC

Power Response for InFO + PVRs System

- Transient time: Time period for power on from 0 to 1 stable state
- The InFO with PVRs system
 - Transient time: 11% of FC & PMIC system

2016 PwrSoC

© 2016 TSMC, Ltd

Summary of the PI Results

System specifications	PDN Z @10MHz	PDN Z @200MHz	Voltage drop	Voltage variation
System 1: VRM on board, SoC on substrate (FCBGA)	1x	1x	1x	1x
System 2: VRM on board, SoC on Si interposer	1.01x	0.45x	1.03x	0.93x
System 3: VR and SoC on Si interposer	0.14x	0.27x	0.23x	0.8x

System specifications	Resistance	Inductance	Voltage variation	Transient time
InFO with PVRs	0.17x	0.09x	0.25x	0.11x
InFO & PMIC	0.91x	0.63x	0.67x	1x
FC & PMIC	1x	1x	1x	1x

2016 PwrSoC

18

Open Innovation Platform®

Summary and Outlooks

- Foundry WLSI technology, CoWoS and InFO, provides leading edge solutions for power management system integration.
- The technologies provide excellent PDN performance for low power consumption, low voltage drop and low voltage variation for system design.
- V_{dd} scaling of SoC leads to power system design challenges
 → TSMC WLSI technology provides the design solution.

© 2016 TSMC, Ltd

Thanks for your attention!

2016 PwrSoC

© 2016 TSMC, Ltd